For any $\theta \, \in \,\left( {\frac{\pi }{4},\frac{\pi }{2}} \right)$, the expression $3\,{\left( {\sin \,\theta  - \cos \,\theta } \right)^4} + 6{\left( {\sin \,\theta  + \cos \,\theta } \right)^2} + 4\,{\sin ^6}\,\theta $ equals

  • [JEE MAIN 2019]
  • A

    $13 - 4\,{\cos ^2}\,\theta \, + 6\,{\sin ^2}\,\theta \,{\cos ^2}\,\theta $

  • B

    $13 - 4\,{\cos ^6}\,\theta \,$

  • C

    $13 - 4\,{\cos ^2}\,\theta \, + 6\,\,{\cos ^4}\,\theta $

  • D

    $13 - 4\,{\cos ^4}\,\theta \, + 2\,{\sin ^2}\,\theta \,{\cos ^2}\,\theta $

Similar Questions

$\tan 75^\circ - \cot 75^\circ = $

If $\cos \left( {\alpha + \beta } \right) = \frac{4}{5}$ and $\sin \left( {\alpha - \beta } \right) = \frac{5}{{13}}$,where $0 \le \alpha ,\beta \le \frac{\pi }{4}$ . Then $\tan 2\alpha =$ 

  • [IIT 1979]

If $A + B + C = \frac{\pi }{2}$ ,then value of $tanA\,\, tanB + tanB\,\, tanC + tanC\,\, tanA$ is

Prove that $\cot x \cot 2 x-\cot 2 x \cot 3 x-\cot 3 x \cot x=1$

The sum of all values of $\theta \, \in \,\left( {0,\frac{\pi }{2}} \right)$ satisfying ${\sin ^2}\,2\theta  + {\cos ^4}\,2\theta  = \frac{3}{4}$ is

  • [JEE MAIN 2019]